高二上册数学教学计划
光阴的迅速,一眨眼就过去了,我们将带着新的期许奔赴下一个挑战,该好好计划一下接下来的教学工作了!相信大家又在为写教学计划犯愁了吧,下面是小编给大家带来的关于高二上册数学教学计划,欢迎大家前来参阅!
高二上册数学教学计划(精选篇1)
一、教学目标
(一)知识与技能
1.通过探究学习使学生掌握几何概型的基本特征,明确几何概型与古典概型的区别.
2.理解并掌握几何概型的概念.
3.掌握几何概型的概率公式,会进行简单的几何概率计算.
(二)过程与方法
1.让学生通过对随机试验的观察分析,提炼它们共同的本质的东西,从而亲历几何概型的建构过程,培养学生观察、类比、联想等逻辑推理能力.
2.通过实际应用,培养学生把实际问题抽象成数学问题的能力,感知用图形解决概率问题的方法.
(三)情感、态度、价值观
1.让学生了解几何概型的意义,加强与现实生活的联系,以科学的态度评价一些随机现象.
2.通过对几何概型的教学,帮助学生树立科学的世界观和辩证的思想,养成合作交流的习惯,初步形成建立数学模型的能力.
二、教学重点与难点
教学重点:了解几何概型的基本特点及进行简单的几何概率计算.
教学难点:如何在实际背景中找出几何区域及如何确定该区域的“测度”.
三、教学方法与教学手段
教学方法:“自主、合作、探究”教学法
教学手段:?电子白板、实物投影、多媒体课件辅助
四、教学过程
课后作业
高二上册数学教学计划(精选篇2)
一、学生基本情况
_班共有学生56人,_班共有学生60人。_班学习数学的气氛较浓,但由于高一函数部分基础特别差,对高二乃至整个高中的数学学习有很大的影响,数学成绩没有尖子生,成绩特差的学生有4人,但若能杂实复习好函数部分,加上学生有很努力,将来前途无量。_班的学生学习气氛不及_班,但是有一批思维相当灵活的学生,但学习不够刻苦,学习成绩一般,但有较大的潜力,特差生比_班要少,此班若能好好的引导,进一步培养他们的学习兴趣,将来一定能赶超_班。但本期新课只有32课时,可以有充足的时间提前仅行高考复习
二、教学要求
(一)知识要求
1.1理解复数及其有关的概念。掌握复数的代数、几何、三角表示及其转换。
1.2掌握复数的运算法则,能正确的进行复数的运算,边理解复数运算的几何意义。
1.3掌握在复数集中解实系数一元二次方程和二次方程的方法。
2.1掌握加法原理及乘法原理、并能用这两个原理分析和解决一些简单的问题。
2.2理解排列、组合的意义,掌握排列数的计算公式和组合数的性质,并能用它们解决一些简单问题。
2.3掌握二项式定理和二项式系数的性质,并能用它们计算和论证一些简单问题。
3.1掌握圆锥曲线的标准方程及其几何性质,会根据所给的条件化圆锥曲线。
3.2理解坐标变换的意义,掌握利用坐标轴平移化简圆锥曲线方程的方法。
3.3掌握弦问题求解方法。
(二)能力要求
1、培养学生的观察力和数学记忆力。
2、培养学生数学化的能力。
3、培养学生的思维能力。
4、培养学生的想象能力。
三、教材简要分析
1、解析几何这一章是高考的重点。必须打下扎实的基础。
2、复数的三角形式,是“三角”与复数的有机结合。
3、复数的几何意义有益于培养学生的数形结合的能力。
4、排列组合二项式定理高考分数不多,但是也是难点。由于实际运用相当广泛,高考要求提高,不容忽视。
四、重点与难点
1、复数的三角形式、代数形式、几何形式、复数的几何意义是重点。
2、复数的辐角与辐角主值、复数的减法的几何意义、两非零向量相等的条件,复数的开方是难点。
3、排列组合综合问题、二项式系数的性质及运用是重点。
4、排列组合综合问题及如何区分排列与组合是难点。
5、轨迹问题是教学的重点与难点.
五、教学措施
1、教学中要传授知识与培育能力相结合,充分调动学生学习的主动性,培育学生的概括能力,是学生掌握数学基本方法、基本技能。
2、坚持与高三联系,切实面向高考,以五大数学思想为主线,有目的、有计划、有重点,避免面面俱到,减轻学生的学习负担。
3、加强教育教学研究,坚持学生主体性原则,坚持循序渐进原则,坚持启发性原则。研究并采用以“五段发现式教学”模式为主的教学方法,全面提高教学质量。
4、积极参加与组织集体备课,共同研究,努力提高授课质量
5、坚持向同行听课,取人所长,补己之短。相互研究,共同进步。
6、坚持学法研讨,加强个别辅导(差生与优生),提高全体学生的整体数学水平,培育尖子学生。
六、课时安排
1、复数共26课时
2、排列组合二项式定理16课时
3、函数32课时
4、参数方程与极坐标10课时
高二上册数学教学计划(精选篇3)
一、学情分析
高二5班共有学生73人,8班共有学生70人。两个班级都是高二理科班的三类班,大部分学生基础不扎实,学习兴趣不高,甚至很多学生存在怕数学科的心理。但他们还是存在一颗想学好数学的心,也想融入变化多端的数学世界,更想在每次考试中独领风骚,鉴于此,对他们正确引导,教学中适当调整难度,起点放低点,步子迈小点,还是会有好成绩的。
二、教学计划
1、加强自身学习。
①加强课本的研读。教科书是一切教学的出发点,同时也是考试的归属地,任何一个数学知识点都会从教科书中找到类型题或者相似题或者其影子。对教科书能否吃透,专研到位,直接决定着教学知识的全面性和系统性。也就决定着研读教材的必要性。
②他山之石,可以攻玉。一个人由于生活的环境,面对的对象,自身知识局限等多方面原因,视野和出发点都有局限,思考问题和解决问题的广度和深度都有局限,因此,多阅读教学参考类的书,吸取他人的经验,借鉴他人所长弥补自己所短,对于增强教学的针对性和精彩性大有裨益。
③强化课改意识。新课改已经全面铺开,新课改的精神和思想都独具时代性,前瞻性,科学性,因此,加强新课改知识的学习,领悟新课改思想,增强新课改意识,是时代的需要,是发展的需要。因此,积极参与新课改培训,领会新课改精髓,并应用于实践中是当前必须要做的,只有这样,才能使自己的知识新陈代谢。
④认真参与组内备课。珍惜每周一次的集体备课,充分利用好这次集体备课机会,从同行们那里学习到自己缺乏或者不擅长的东西,并积极实施好组内的各项安排,落实好课时要求。
⑤增强听课意识。按照学校的要求,积极参加新课改年级的课堂听课活动,听取授课教师的点评,发现亮点,记录亮点,积累亮点,点亮亮点。
2、抓好课堂教学主战场,激发师生学习数学热情。
①加强新课情景创设,激发学生学习热情。每一节新课的开展,都有其现实意义,有其价值所在,有其趣味性,充分挖掘好这方面知识,可起到一个良好的开端作用。
②精选精讲例题。对于学生自己学得会的,不讲,对于学生讨论后可以解决的,给以适当点拨,对于学生在老师引导下完成的,要慢慢讲,细细的讲,争取每个学生都听得进,听得懂,学得会。对于超越学生承受能力的,一概不讲。
③精心布置课后作业。课后作业是课堂教学的反馈,作业质量的高低,一定层面可以反映教学效果的高低,因此,作业的布置需要科学化,分层化,多样化,且知识点具有全面性。
3、做好课后辅导工作。
①利用晚自习,充分给以每个学生耐心、细心、全面的辅导。让学生积累的问题得到彻底解决。
②利用自习课时间,寻找需要帮助的学生进行辅导,公式背不出来的,抓背公式,不交作业的,责令补交作业。
4、做好作业、考试反馈工作。
学生认真完成作业和考卷,老师进行批改,总结共性问题,发现个性问题,有针对性的给以反馈,及时消除困惑。
5、规范作答,养成良好习惯。
现在学生的数学答卷,条理不清晰,逻辑混乱,因果颠倒,这是基础不扎实的表现,更是一种思维的缺陷。因此,现阶段抓好规范答题,有助于学生良好数学思维的养成,避免将来高考失分和日后生活的凌乱。
6、培养学生的数学兴趣,普及数学价值规律的应用。
兴趣是最好的老师。数学难,数学烦,难在何处,烦在何方?找到原因,对症下药,通过课堂,移植中外数学趣味知识,让学生体会到数学的价值所在,通过多媒体,降低数学思维难度等等都是提高学生兴趣的好方法。
以上是这个学期的教学工作计划,在实施过程中,将及时作出调整,以期达到教与学的最佳效果。
高二上册数学教学计划(精选篇4)
一、指导思想
在学校和数学小组的领导下,严格执行学校的各项教育教学制度和要求,认真完成各项任务,严格执行“三规”“五严”。在有限的时间内,学生可以获得必要的基本数学知识和技能,同时可以提高数学能力,从而为未来的发展奠定坚实的数学基础。
二、教学措施
1.以能力为中心,以基础为基础,调整学生的学习习惯,激发学生的学习热情,使学生在学习中获得成功
3、脚踏实地做好实施工作。内容和消化当天,加强检查和实施每日和每月的通关演习。每周练习,每次考试一章。通过每周一次的练习,突破一些重点和难点,在考试的每一章检查差距和填空,考完试再对每一章的不足之处进行点评。
4、周练章考,认真把握试题选择,认真把握高考脉搏,注重基础知识的考查,注重能力的考查,注重思维的层次性(即解题的多样性),及时引入一些新题型,加强应用题的考察。每次考试都坚持集体研究,努力提高考试效率。
5.注意所选的例子和练习:
6.精心规划合理安排,根据数学的特点,注重知识和能力的提高,增强综合解题能力,加强解题教学,使学生提高解题探究能力。
7.从“贴近教材、贴近学生、贴近实际”的角度,选择典型的数学与生活、生产、环境、科技等方面的问题联系起来,有计划、有针对性地培养学生,给学生更多锻炼各种能力的机会,从而达到提高学生数学综合能力的目的。基础扎实的学生,不脱离基础知识,能力未必强。基础知识在教学中不断应用于解决数学问题。
三、对自己的要求——实施各方面的教学
1.认真教每一节课
备课时要从实际出发,精心设计每节课,分工协作,用集体智慧制作课件,充分运用现代教育手段服务教学,45分钟内提高课堂效率。
2.严格控制考试,认真做好每次复习资料和练习
教材要要求学生根据教学进度完成相应的练习,教师要给予检查和必要的点评,教师要提前指出自己没有做的问题,以免影响学生的学习。三类习题(大习题、限时训练、月考)试题制作分工落实到每个人(月考试卷由备考组制作,大习题、限时训练试卷由其他老师制作),经组长严格把关后才能使用。
注重考试质量和试卷分析,定期组织备考组老师分析学习情况,发现问题,找到对策,及时解决,确保学生学习积极性不断提高。
3.做好批改作业,加强疏导
高二上册数学教学计划(精选篇5)
这学期,可以说大多数的学生的成绩基本定型,但是仍然还有一部分学生有可能在原来的基础上,进一步提高自己的数学成绩,因此本学期不能因为到了高二下学期就对自己和学生松懈。根据学科的特点,结合我校数学教学的实际情况制定以下教学计划。
一、教学内容
高中数学所有内容:抓基础知识和基本技能,抓数学的通性通法,即教材与课程目标中要求我们把握的数学对象的基本性质,处理数学问题基本的、常用的数学思想方法,如归纳、演绎、分析、综合、分类讨论、数形结合等。提高学生的思维品质,以不变应万变,使数学学科的复习更加高效优质。
研究《考试说明》,全面掌握教材知识,按照考试说明的要求进行全面复习。把握课本是关键,夯实基础是我们重要工作,提高学生的解题能力是我们目标。
研究《课程标准》和《教材》,既要关心《课程标准》中调整的内容及变化的要求,又要重视今年数学不同版本《考试说明》的比较。结合上一年的新课改区高考数学评价报告,对《课程标准》进行横向和纵向的分析,探求命题的变化规律。
二、学情分析
我今年教授两个班的数学:(20)班和(23)班,经过与同组的其他老师商讨后,打算第一轮20__年2月初;第二轮从20__年2月底至5月上旬结束;第三轮从20__年5月上旬至5月底结束。
三、具体措施
(一)同备课组老师之间加强研究
1、研究《课程标准》、参照周边省份20__年《考试说明》,明确复习教学要求。
2、研究高中数学教材。处理好几种关系:课标、考纲与教材的关系;教材与教辅资料的关系;重视基础知识与培养能力的关系。
3、研究__年新课程地区高考试题,把握考试趋势。特别是山东、广东、江苏、海南、宁夏等课改地区的试卷。
4、研究高考信息,关注考试动向。及时了解20__高考动态,适时调整复习方案。
5、研究本校数学教学情况、尤其是本届高二学生的学情。有的放矢地制订切实可行的校本复习教学计划。
(二)重视课本,夯实基础,建立良好知识结构和认知结构体系
课本是考试内容的载体,是高考命题的依据,也是学生智能的生长点,是最有参考价值的资料。
(三)提升能力,适度创新
考查能力是高考的重点和永恒主题。教育部已明确指出高考从以知识立意命题转向以能力立意命题。
(四)强化数学思想方法
数学不仅仅是一种重要的工具,更重要的是一种思维模式,一种思想。注重对数学思想方法的考查也是高考数学命题的显著特点之一。数学思想方法是对数学知识最高层次上的概括提炼,它蕴涵于数学知识的发生、发展和应用过程中,能够迁移且广泛应用于相关科学和社会生活。在复习备考中,要把数学思想方法渗透到每一章、每一节、每一课、每一套试题中去,任何一道精心编拟的数学试题,均蕴涵了极其丰富的数学思想方法,如果注意渗透,适时讲解、反复强调,学生会深入于心,形成良好的思维品格,考试时才会思如泉涌、驾轻就熟,数学思想方法贯穿于整个高中数学的始终,因此在进入高二复习时就需不断利用这些思想方法去处理实际问题,而并非只在高二复习将结束时去讲一两个专题了事。
(五)强化思维过程,提高解题质量
数学基础知识的学习要充分重视知识的形成过程,解数学题要着重研究解题的思维过程,弄清基本数学知识和基本数学思想在解题中的意义和作用,注意多题一解、一题多解和一题多变。多题一解有利于培养学生的求同思维;一题多解有利于培养学生的求异思维;一题多变有利于培养学生思维的灵活性与深刻性。在分析解决问题的过程中既构建知识的横向联系,又养成学生多角度思考问题的习惯。
(六)认真总结每一次测试的得失,提高试卷的讲评效果
试卷讲评要有科学性、针对性、辐射性。讲评不是简单的公布正确答案,一是帮学生分析探求解题思路,二是分析错误原因,吸取教训,三是适当变通、联想、拓展、延伸,以例及类,探求规律。还可横向比较,与其他班级比较,寻找个人教学的薄弱环节。根据所教学生实际有针对性地组题进行强化训练,抓基础题,得到基础分对大部分学校而言就是高考成功,这已是不争的共识。
四、教学要求:
第二轮专题过关,对于高考数学的复习,应在一轮系统学习的基础上,利用专题复习,更能提高数学备考的针对性和有效性。在这一阶段,锻炼学生的综合能力与应试技巧,不要重视知识结构的先后次序,需配合着专题的学习,提高学生采用配方法、待定系数法、数形结合,分类讨论,换元等方法解决数学问题的能力,同时针对选择、填空的特色,学习一些解题的特殊技巧、方法,以提高在高考考试中的对时间的掌控力。第三轮综合模拟,在前两轮复习的基础上,为了增强数学备考的针对性和应试功能,做一定量的高考模拟试题是必须的,也是十分有效的。该阶段需要解决的问题是:
1、强化知识的综合性和交汇性,巩固方法的选择性和灵活性。
2、检查复习的知识疏漏点和解题易错点,探索解题的规律。
3、检验知识网络的形成过程。
4、领会数学思想方法在解答一些高考真题和新颖的模拟试题时的工具性。
五、在有序做好复习工作的同时注意一下几点:
(1)从班级实际出发,我要帮助学生切实做到对基础训练限时完成,加强运算能力的训练,严格答题的规范化,如小括号、中括号等,特别是对那些书写像雾像雨又像风的学生要加强指导,确保基本得分。
(2)在考试的方法和策略上做好指导工作,如心理问题的疏导,考试时间的合理安排等等。
(3)与备课组其他老师保持统一,对内协作,对外竞争。自己多做研究工作,如仔细研读订阅的杂志,研究典型试题,把握高考走势。
(4)做到有练必改,有改必评,有评必纠。
(5)课内面向大多数同学,课外抓好优等生和边缘生,尤其是边缘生。班级是一个集体,我们的目标是水涨船高,而不是水落石出。
(6)教研组团队合作
虚心学习别人的优点,博采众长,对工作是很有利的。校长一直强调团队精神,所以我们要在竞争的基础上合作,合作的基础上竞争,合作也是我校的优良传统。我们几位老师准备做到一盘棋的思想,有问题一起分析解决,复习资料要共享。在工作中,教师间的合作就显得尤为重要。
(7)平等对待学生,关心每一位学生的成长,宗旨是教出来的学生不一定都很优秀,但肯定每一位都有进步;让更多的学生喜欢数学。力争以严、实、精、活的教风带出勤、实、悟、活的学风。
高二上册数学教学计划(精选篇6)
教学目标:
1、知识与技能
(1)了解算法的含义,体会算法的思想;
(2)能够用自然语言叙述算法;
(3)掌握正确的算法应满足的要求;
(4)会写出解线性方程(组)的算法;
(5)会写出一个求有限整数序列中的最大值的算法.
2、过程与方法
(1)通过求解二元一次方程组,体会解方程的一般性步骤,从而得到一个解二元一次方程组的步骤,这些步骤就是算法,不同的问题有不同的算法;
(2)同一个问题也可能有多个算法,能模仿求解二元一次方程组的步骤,写出一个求有限整数序列中的最大值的算法.
3、情感与价值观
通过本节的学习,对计算机的算法语言有一个基本的了解;明确算法的要求,认识到计算机是人类征服自然的一个有力工具,进一步提高探索、认识世界的能力.
教学重点、难点:
重点:算法的含义,解二元一次方程组、判断一个数为质数和利用“二分法”求方程近似解的算法设计.
难点:把自然语言转化为算法语言.
教学过程:
(一)创设情景、导入课题
问题1:把大象放入冰箱分几步?
第一步:把冰箱门打开;
第二步:把大象放进冰箱;
第三步:把冰箱门关上.
问题2:指出在家中烧开水的过程分几步?(略)
问题3:如何求一元二次方程 的解?
第一步:计算 ;
第二步:如果 ,
如果 ,方程无解
第三步:下结论.输出方程的根或无解的信息.
注意:在以上三个问题的求解过程中,老师要紧扣算法定义,带领学生总结,反复强调,使学生体会以下几点:
①有穷性:步骤是有限的,它应在有限步操作之后停止,而不能是无限地执行下去。
②确定性:每一步应该是确定的并且能有效地执行且得到确定的结果,而不应当是模棱两可的。
③逻辑性:从初始步骤开始,分为若干个明确的步骤,前一步是后一步的前提,只有执行完前一步才能进行下一步,并且每一步都准确无误,才能完成问题。
④不唯一性:求解某一个问题的算法不一定只有唯一的一个,可以有不同的算法。
⑤普遍性:很多具体的问题,都可以设计合理的算法去解决。
注:其他还有输入性、输出性等特征,结论不固定.
提问:算法是如何定义?
(二)师生互动、讲解新课
_-2y=-1 ①
回顾(课本P2内容): 写出解二元一次方程组 2_ y=1 ② 的算法.
解:第一步,②×2 ①,得5_=1;③
第二步,解③,得_= ;
第三步,②-①×2得5y=3;④
第四步,解④ ,得y= ;
第五步,得到方程组的解为 _= ;y= 。
思考1:你能写出求解一般的二元一次方程组的步骤吗?
上题的算法是由加减消元法求解的,这个算法也适合一般的二元一次方程组的解法
对于一般的二元一次方程组 可以写出类似的求解步骤:
第一步,①×b2-②×b1,得 ;③
第二步,解③,得 .
第三步,②×a1-①×a2,得 ;④
第四步,解④,得 ;
第五步,得到方程组的解为
(高斯消去法)
思考2:根据上述分析,用加减消元法解二元一次方程组,可以分为五个步骤进行,这五个步骤就构成了解二元一次方程组的一个“算法”.我们再根据这一算法编制计算机程序,就可以让计算机来解二元一次方程组.那么解二元一次方程组的算法包括哪些内容?
思考3:一般地,算法是由按照一定规则解决某一类问题的基本步骤组成的.
你认为:
(1)这些步骤的个数是有限的还是无限的?
(2)每个步骤是否有明确的计算任务?
总结:在数学中,按照一定规则解决某一类问题的明确和有限的步骤称为算法.
算法(algorithm)一词出现于12世纪,源于算术(algorism),即算术方法.指的是用阿拉伯数字进行算术运算的过程.在数学中,算法通常是指按照一定的规则解决某一类问题的明确的和有限的步骤.现在,算法通常可以编成计算机程序,让计算机执行并解决问题.后来,人们把它推广到一般,把进行某一工作的方法和步骤称为算法.
广义地说,算法就是做某一件事的步骤或程序.菜谱是做菜肴的算法,洗衣机的使用说明书是操作洗衣机的算
法,歌谱是一首歌曲的算法.在数学中,主要研究计算机能实现的算法,即按照某种机械程序步骤一定可以得到结果的解决问题的程序.比如解方程的算法、函数求值的算法、作图的算法,等等.
(三)例题剖析,巩固提高
例1(课本P3例1):如果让计算机判断7是否为质数,如何设计算法步骤?
算法:
第一步,用2除7,得到余数1,所以2不能整除7.
第二步,用3除7,得到余数1,所以3不能整除7.
第三步,用4除7,得到余数3,所以4不能整除7.
第四步,用5除7,得到余数2,所以5不能整除7.
第五步,用6除7,得到余数1,所以6不能整除7.
因此,7是质数.
课堂练习1:
整数89是否为质数?如果让计算机判断89是否为质数,按照上述算法需要设计多少个步骤?
思考4:用2~88逐一去除89求余数,需要87个步骤,这些步骤基本是重复操作,我们可以按下面的思路改进这个算法,减少算法的步骤.
(1)用i表示2~88中的任意一个整数,并从2开始取数;
(2)用i除89,得到余数r. 若r=0,则89不是质数;若r≠0,将i用i 1替代,再执行同样的操作;
(3)这个操作一直进行到i取88为止.
你能按照这个思路,设计一个“判断89是否为质数”的算法步骤吗?
算法设计:
第一步,令i=2;
第二步,用i除89,得到余数r;
第三步,若r=0,则89不是质数,结束算法;若r≠0,将i用i 1替代;
第四步,判断“i>88”是否成立?若是,则89是质
数,结束算法;否则,返回第二步.
探究:一般地,判断一个大于2的整数是否为质数的算法步骤如何设计?
在中央电视台幸运52节目中,有一个猜商品价格的环节,竟猜者如在规定的时间内大体猜出某种商品的价格,就可获得该件商品.现有一商品,价格在0~8000元之间,采取怎样的策略才能在较短的时间内说出比较接近的答案呢?
例2、一群小兔一群鸡,两群合到一群里,要数腿共48,要数脑袋整17,多少只小兔多少只鸡?
算法1:S1 首先计算没有小兔时,小鸡的数为:17只,腿的总数为34条。
S2 再确定每多一只小兔、减少一只小鸡增加的腿数2条。
S3 再根据缺的腿的条数确定小兔的数量: (48-34)/2=7只
S4 最后确定小鸡的数量:17-7=10只.
算法2:S1 首先设 只小鸡, 只小兔。
S2 再列方程组为:
S3 解方程组得:
S4 指出小鸡10只,小兔7只。
算法3:S1 首先设 只小鸡,则有 只小兔
S2 列方程
S3 解方程得 ,则
S4 指出小鸡10只,小兔7只.
算法4:S1 “请一名驯兽师”所有小鸡抬一条腿,所有小兔抬两条腿
S2 有小兔 只
S3 有小鸡 只
S4 指出小鸡10只,小兔7只.
算法5:S1 有小兔 只
S2 有小鸡 只
二分法:
对于区间[a,b ]上连续不断,且f(a)f(b)<0的函数y=f(_),通过不断地把函数f(_)的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,而得到零点近似值的方法叫做二分法.
例3(课本P4例2):写
出用“二分法”求方程 的近似解的算法.
算法分析:
令f(_)= ,则方程 的解就是函数f(_)的零点.
第一步,令f(_)= ,给定精确度d.
第二步,确定区间[a,b],满足f(a)·f(b)<0.
第三步,取区间中点 .
第四步,若f(a)·f(m)<0,则含零点的区间为[a,m],否则,含零点的区间为[m,b].
将新得到的含零点的区间仍记为[a,b];
第五步,判断[a,b]的长度是否小于d或f(m)是否等于0.若是,则m是方程的近似解;否则,返回第三步.
(四)课堂小结,巩固反思
1、算法的主要特点:
(1)有限性:一个算法在执行有限步后必须结束;
(2)确切性:算法的每一个步骤和次序必须是确定的;
(3)输入:一个算法有0个或多个输入,以刻划运算对象的初始条件.所谓0个输入是指算法本身定出了初始条件.
(4)输出:一个算法有1个或多个输出,以反映对输入数据加工后的结果.没有输出的算法是毫无意义的.
2、计算机解决任何问题都要依赖算法,算法是建立在解法基础上的操作过程,算法不一定要有运算结果.设计一个解决某类问题的算法的核心内容是将解决问题的过程分解为若干个明确的步骤,即算法,它没有一个固定的模式,但有以下几个基本要求:
(1)符合运算规则,计算机能操作;
(2)每个步骤都有一个明确的计算任务;
(3)对重复操作步骤作返回处理;
(4)步骤个数尽可能少;
(5)每个步骤的语言描述要准确、简明.
高二上册数学教学计划(精选篇7)
一、指导思想:
1、获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。通过不同形式的自主学习、探究活动,体验数学发现和创造的历程。
2、提高空间想像、抽象概括、推理论证、运算求解。
3、提高数学地提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。
4、发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。
5、提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。
二、教学目标:
(一)情意目标:
(1)通过分析问题的方法的教学,培养学生的学习兴趣。
(2)提供生活背景,通过数学建模,让学生体会数学就在身边,培养学数学用数学的意识。
(3)在探究中体验获得数学规律的艰辛和乐趣,在分组研究合作的学习中学会交流、相互评价,提高学生的合作意识。
(二)能力要求:
(1)通过定义、命题的总体结构教学,揭示其本质特点和相互关系,培养对数学本质问题的背景事实及具体数据的记忆。
(2)通过揭示所学内容中的有关概念、公式和图形的对应关系,培养记忆能力。
(3)通过教学,提高学生是运算过程具有明晰性、合理性、简捷性能力。
(4)通过一题多解、一题多变培养正确、迅速与合理、灵活的运算能力,促使知识间的渗透和迁移。
(5)利用数形结合,另辟蹊径,提高学生运算能力。
三、教学内容
本学期教学内容有立体几何、解析几何、逻辑知识和圆锥曲线、二元一次不等式(组)与简单的线性规划。
立体几何是研究的是物体的形状、大小与位置关系。通过直观感知、操作确认、思辨论证、等方法认识和探索几何图形及其性质。通过学习,培养和发展学生的空间想象能力、推理论证能力、运用图形语言进行交流的能力以及几何直观能力。
直线和圆是用代数方法研究图形的几何性质,体现了数形结合的重要数学思想。在平面直角坐标系中建立直线和圆的代数方程,运用代数方法研究它们的几何性质及其相互位置关系,并了解空间直角坐标系,体会数形结合的思想,初步形成用代数方法解决几何问题的能力。
高二上册数学教学计划(精选篇8)
一、教学内容与内容解析
1.内容:
统计,简单随机抽样,抽签法,随机数表法。
2.内容解析:
本节课是人教版《高中数学》第三册(选修Ⅱ)的第一章“概率与统计”中的“抽样方法”的第一课时:简单随机抽样.其主要内容是介绍简单随机抽样的概念以及如何实施简单随机抽样.数理统计学包括两类问题,一类是如何从总体中抽取样本,另一类是如何根据对样本的整理、计算和分析,对总体的情况作出一种推断.可见,抽样方法是数理统计学中的重要内容.简单随机抽样作为一种简单的抽样方法,又在其中处于一种非常重要的地位.因此它对于学习后面的其它较复杂的抽样方法奠定了基础,同时它强化对概率性质的理解,加深了对概率公式的运用.因此它起到了承上启下的作用,在教材中占有重要地位.
本节课是在学生初中已学习了统计初步知识的基础上,系统学习统计的基本方法,体验统计思想的第一课时.本节课通过结合具体的实际问题情景,使学生认识到随机抽样的必要性和重要性,进而分析得到简单随机抽样的定义、常用实施方法.这些活动的实施就是想引导学生从现实生活或其它学科中提出具有一定价值的统计问题,初步形成运用统计的思想和方法(用数据说话)来思考问题和解决问题的习惯.。
本课题为“简单随机抽样”,主要学习简单随机抽样的理论与方法.从理论上讲,“简单”是指抽取的样本为“简单随机样本”,获取简单随机样本的抽样方法称为简单随机抽样.简单随机抽样要满足以下两个条件:(1)代表性,即要求样本的每个分量_i与所考察的总体_具有相同的概率分布F(_);(2)独立性,_1,_2,…,_n为相互独立的随机变量,也就是说,每个观察结果不影响其它观察结果,也不受其它观察结果的影响.当然在有限总体中,样本的各个观察结果可以是不独立的.在本节课中,要将这些关于随机抽样的理论,用浅显的例子渗透在学生的学习过程中.因此,教学的内容应侧重于如何使抽取的数据能代表总体,即抽取的样本要能反映总体的本质特征.要抓住两个特征展开,要求抽取的样本有代表性,样本的.容量要适当,太大没有必要,太小不能反映总体的特征.其次,要体现独立性,在简单随机抽取时,总体中每个个体被抽到的概率是相等的,说明这种抽样的方法是独立的.抽取的样本的分布与总体分布相似度越高,样本的代表就越大.这就为后续学习三种抽样方法的形成与评价提供基础.
从知识的应用价值来看,重视数学知识的应用和关注人文内涵是新教材的显著特点.丰富的生活实例为学生用数学的眼光看待生活,体验生活即数学的理念,体验用算法思想解决模式化问题的作用,有助于学生对统计思想和方法的掌握,增加学生的感性认识.。
二、教学目标与目标解析
1.目标:
(1)通过实例,了解学习统计的意义,了解统计学的基本内容和方法.
(2)通过实例,了解随机抽样的必要性.
(3)理解随机抽样的概念.这里随机抽样的概念在初中阶段学生已经学习过,但在此处学习正是体现知识的螺旋上升,这里提出的总体、个体和样本的概念应该更加理性.
(4)通过实例分析随机抽样应满足的基本条件.作为教师要明确学习随机抽样的主要目的是用样本估计总体,要使所抽取的样本能估计总体,抽取数据的方法要根据对数据的要求而定,方法应该是量身定做的.
(5)体会简单随机抽样的方法.教学过程应该充分体现学生的主体作用,不囿于教材顺序的限定,结合学生已有的知识结构,充分展示学生的学习经验和能力.
2.目标解析:
教学目标(3)和(4)是本节课的教学重点也是难点。我们要建立一种数学的基本思维过程,也是人们学习和生活中经常使用的思维方式。借助学生已有生活常识,形成推理的直观认识;让学生通过自己动手体验数学的一种基本思维过程,经历人们学习和生活中经常使用的思维活动。
教学目标(5)是学生初学时不易达到的目标,教学时要紧密地结合学生熟悉的已学过的数学实例和生活实例,是学生体会解决问题时应该关注的要点,体会简单随机抽样的方法.应用简单随机抽样的方法。
三、教学问题诊断分析
教学重点、难点
重点:简单随机抽样的定义,抽样方法,各种方法适用情况,及对比
难点:简单随机抽样中的等可能性及简单随机抽样的特点,随机数表法应用。
本节课是学生在义教阶段学习了数据的收集、抽样、总体、个体、样本等统计概念以后,进一步学习统计知识的.这是义教阶段统计知识的发展,因此教学过程不应是一种简单的重复,也不应停留在对普查与抽样优劣的比较和方法的选择,而应该发展到对抽样进一步思考上,主要应集中的以下四个问题上:(1)为什么要进行随机抽样;(2)什么是随机抽样(数理统计上的随机抽样概念);(3)简单随机抽样应满足什么样的条件;(4)如何进行简单随机抽样.教学的重点是使学生关注数据收集的方法应该由目的与要求所决定的,任何数据的收集都有一定的目的,数据的抽取是随机的.要更加理性地看待数据收集的方法,要从随机现象本身的规律性来看待数据收集的方法.特别是要突出简单随机样本的两个特征.要改变学生仅从形式上来理解简单随机抽样的问题.在教学中学生可能会产生随机抽样中简单随机抽样、系统抽样和分层抽样的雏形,教师不必进一步明确界定概念,可待后续的学习中进一步完善.
如何发现随机抽样的公平性,也就是“如何去观察,才能发现规律”。学生可以很顺利地得到几个事实,但是如何去观察,这是学生学习时遇到的第一个教学问题。也是本节课的教学难点之一。教学时,应通过实例,帮助学生总结出观察一定要有目标,并用具体问题让学生练习进行体会。
四、教学支持条件
本节课教学支持条件首先是学生已经学习过随机抽样的概念,因此教学可以在此基础上展开.教材例题的选取都来自于学生的生活经验,便于学生理解.可以通过投影和计算机,扩展学生收集数据的方法.基于本节课内容的特点和学生的心理及思维发展的特征,在教学中选择问题引导、事例讨论和归纳总结相结合的教学方法.与学生建立平等融洽的互动关系,营造合作交流的学习氛围.在引导学生进行观察、分析、抽象概括、练习巩固各个环节中运用多媒体进行演示,增强直观性,提高教学效率,激发学生的学习兴趣.
五、教学过程设计
六、目标检测设计
(1)利用随机数表法从40件产品中抽取10件检查。
(2)分小组进行社会问题的实际调查,题目自拟。
(设计意图:通过训练,巩固本课所学知识,检测运用所学知识解决问题的能力;实习作业的设置为了教会学生怎样利用资料进行数学学习,同时让学生了解网络是自主学习和拓展知识面的一个重要平台。这是本节内容的一个提高与拓展。)
高二上册数学教学计划(精选篇9)
※教学目标:
知识与技能:
1、掌握空间直角坐标系的建立过程和相关概念
2、学会在坐标系中找出空间点的位置,会写一些简单几何体中有关点的坐标
过程与方法:
1、经历运用空间直角坐标系来描述空间图形的过程,初步建立数感和空间感,从空间的点的坐标培养学生的空间想象能力、抽象思维和探索能力。
2、通过类比、迁移、的方法得出空间直角坐标系的建立的过程和空间点
的坐标确定的方法。
情感、态度与价值观:
1、让学生认识到数学与日常生活的密切联系,从而能够积极的参与数学的学习活动。
2、通过学生的自主学习和合作学习,培养学生合作精神。
※教学重、难点:
重点:空间直角坐标系的建立,点在空间直角坐标系中的坐标表示
难点:通过建立适当的空间直角坐标系来确定空间点的坐标,以及相关的应用。
※教学准备:
教师准备:制作本节图4.3-1、图4.3-2、图4.3-3、图4.3-4、图4.3-5和食盐
晶体模型的投影片
学生准备:直尺和正方形纸片
※教学过程:
(一)问题情境、导入课题
【投影】问题1、数轴O_上的点M,用代数的方法怎样表示呢?
问题2、直角坐标平面上的点M,怎样表示呢?
问题3、怎样确切的表示室内灯泡的位置?
(学生复习回顾后回答问题1和问题2,思考、讨论后回答)
【点拨】1、问题1和问题2是确定点在直线和直角坐标平面的位置的方法。
2、问题3是空间点的位置确定的问题,我们可以类比平面直角坐标的方法,建立空间直角坐标系来确定空间点的位置(板书课题)
(二)师生互动、探究新知
1、空间直角坐标系的建立
【投影】问题4、空间中的点M用代数的方法又怎样表示呢?
(教师设问)空间直角坐标系该如何建立呢?
【投影】(1)直角坐标系的建立过程
如图:OABC-DABC是单位正方体,以O为原点,分别以射线OA,OC,OD的方向为正方向,以OA,OC,OD的长为单位长,建立三条数轴: _轴、y 轴、z 轴.这时我们说建立了一个空间直角坐标系O-_yz,其中点O 叫做坐标原点, _轴(横轴)、y 轴(纵轴)、z 轴(竖轴)叫做坐标轴.通过每两个坐标轴的平面叫做坐标平面,分别称为_Oy 平面、yOz平面、zO_平面.(引导学生仔细观察和理解)
【说明】①三条数轴两两相互垂直且相交于原点O,同时都有相同的单位长度
②任意两条确定一个平面,共有三个平面,称坐标平面
③三个坐标平面把空间分成8个部分(让同学动手操作亲历感受)
【投影】(2)空间直角坐标系的画法
(3)右手直角坐标系
2、空间点的坐标表示
【投影】合作探究:
有了空间直角坐标系,那空间中的任意一点A怎样来表示它的坐标呢?
(设问)平面直角坐标系中的点与坐标有着一一对应关系,那么在空
间直角坐标系中点与三维有序实数组之间也有一一对应关系
吗?(学生自行阅读教材P134)
【点拨】是一一对应关系。
3、坐标平面及坐标轴上的点的特征
【投影】练习:如图,OABC—A’B’C’D’是单位正方体.以O为原点,分别以射线OA,OC, OD’的方向为正方向,以线段OA,OC, OD’的长为单位长,建立空间直角坐标系O—_yz.试说出正方体的各个顶点的坐标.并指出哪些点在坐标轴上,哪些点在坐标平面上y
(师生共同完成后,投影幻灯片)
【投影】想一想?
在空间直角坐标系中,_、y、z坐标轴上的点、_oy、_oz、yoz坐标平面
内的点的坐标各有什么特点?
(学生思考、讨论后教师总结)
(三)典型例题、解释应用
【投影】例1:如图在长方体OABC-A1B1C1D1 中,|OA|=3,|OC|=4,|OD1|=2,写出点D1,C,A1,B1的
坐标及BB1的中点M的坐标和A1AOO1的对角线的交点N的坐标.. 目标:学生在教师的指导下完成,加深对点的坐标的理解.
(解的分析和过程见投影)
【投影】例2:结晶体的基本单位称为晶胞,下图是食盐晶胞的示意图(可看成八1个棱长是的小正方体堆积成的正方体),其中色点代表钠原子,黑点代表绿2
原子.如图建立空间直角坐标系,试写出全部钠原子所在的位置的坐标.
目标:教师引导学生先阅读教材,根据建立的空间直角坐标系,写出所求
点的坐标.
(解的分析和过程见投影)
( 四)随堂练习、巩固新知
练习1、教材P136练习第2小题
(五)课堂小结、温故知新
1、空间直角坐标系的建立
2、空间直角坐标系的画法
3、空间直角坐标系中点的坐标表示方法及点与坐标的一一对应关系
(六)布置作业
教材P136练习第1、3小题。
(七)板书设计:
4.3.1空间直角坐标系
一、空间直角坐标系的建立
1、建立过程
2、空间直角坐标系画法
3、空间直角坐标系是右手系
二、空间坐标系中点的坐标表示方法
三、坐标系中特殊点的坐标特征
1、坐标轴上点的坐标特征
2、坐标平面上点的坐标特点
四、例题分析
高二上册数学教学计划(精选篇10)
一、指导思想
1、培养学生的逻辑思维能力、运算能力、空间想象能力,以及综合运用有关数学知识分析问题和解决问题的能力。使学生逐步地学会观察、分析、综合、比较、抽象、概括、探索和创新的能力;运用归纳、演绎和类比的方法进行推理,并正确地、有条理地表达推理过程的能力。
2、根据数学的学科特点,加强学习目的性的教育,提高学生学习数学的自觉心和兴趣,培养学生良好的学习习惯,实事求是的科学态度,顽强的学习毅力和独立思考、探索创新的精神。
3、使学生具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,理解数学中普遍存在着的运动、变化、相互联系和相互转化的情形,从而进一步树立辩证唯物主义和历史唯物主义世界观。
二、目的要求
1、深入钻研教材,以教材为核心,“以纲为纲,以本为本”深入研究教材中章节知识的内外结构,熟练把握知识的逻辑体系和网络结构,细致领会教材改革的精髓,把握通性通法,逐步明确教材对教学形式、内容和教学目标的影响。
2、因材施教,以学生为学习的主体,构建新的认知体系,营造有利于学生学习的氛围。
3、加强课堂教学研究,科学设计教学方法,扎实有效的提高课堂教学效果,全面提高数学教学质量。
三、具体措施
1、不孤立记忆和认识各个知识点,而要将其放到相应的体系结构中,在比较、辨析的过程中寻求其内在联系,达到理解层次,注意知识块的复习,构建知识网路。注重基础知识和基本解题技能,注意基本概念、基本定理、公式的辨析比较,灵活运用;力求有意识的分析理解能力;尤其是数学语言的表达形式,推力论证要思路清晰、整体完整。
2、学会分析,首先是阅读理解,侧重于解题前对信息的捕捉和思路的探索;其次是解题回顾,侧重于经验及教训的总结,重视常见题型及通法通解。
3、以“错”纠错,查缺补漏,反思错误,严格训练,规范解题,养成:想明白,写清楚,算准确的习惯,注意思路的清晰性、思维的严谨性、叙述的条理性、结果的准确性,注重书写过程,举一反三,及时归纳,触类旁通,加强数学思想和数学方法的应用。
4、协调好讲、练、评、辅之间的关系,追求数学复习的最佳效果,注重实效,努力提高复习教学的效率和效益;精心设计教学,做到精讲精练,不加重学生的负担,避免“题海战”,精心准备,讲评到为,做到讲评试卷或例题时:讲清考察了那些知识点,怎样审题,怎样打开解题思路,用到了那些方法技巧,关键步骤在那里,哪些是典型错误,是知识和是逻辑,是方法、是心理上、策略上的错误,针对学生的错误调整复习策略,使复习更加有重点、针对性,加快教学节奏,提高教学效率。
5、周密计划合理安排,现数学学科特点,注重知识能力的提高,提升综合解题能力,加强解题教学,使学生在解题探究中提高能力。
6、多从“贴近教材、贴近学生、贴近实际”角度,选择典型的数学联系生活、生产、环境和科技方面的问题,对学生进行有计划、针对性强的.训练,多给学生锻炼各种能力的机会,从而达到提升学生数学综合能力之目的。不脱离基础知识来讲学生的能力,基础扎实的学生不一定能力强。教学中,不断地将基础知识运用于数学问题的解决中,努力提高学生的学科综合能力。
新的学期是新的起点,新的希望。通过上面的计划,我相信自己在本学期一定能够将两个班的数学成绩带上去,我相信,我能行。