高二数学期末教学总结
在发展不断提速的社会中,我们的工作之一就是课堂教学,反思是思考过去的事情,从中总结经验教训。反思要怎么写呢?下面是小编收集整理的高二数学期末教学总结,欢迎阅读与收藏。
高二数学期末教学总结1
高二教学工作已经结束,本学期按期初制定的教学计划顺利地完成了教学任务。
本学年我担任高二年(29)班与(16)班的数学老师,认真钻研数学中的每一个知识点,精心设计每一节课,虚心学习,无论是出勤、备课,还是业务学习、教研教改,都积极参加。经受了磨砺和考验的我,在各个方面都得到了很大的提高,尤其是学科知识的理解和业务水平方面更有了进步。
在教学中,我积极引导学生自主地学习,并创设情境,激发他们的学习兴趣,养成良好的学习习惯:在学习中除了要眼、脑、手并用,勤学、善思、多问之外,还要在课前做好预习,把握重点;课上认真听讲,拓展思维;课后全面复习,巩固提升;独立完成作业、检验学习效果。这四步是每位同学都应养成的良好习惯,并且需要持之以恒培养他们的创新能力,努力使每一个学生在有效的时间内学到尽可能多的知识。功夫不负有心人,我所付出的努力,也得到了应有的回报。学期末的考试中,大部分同学成绩都有了较大的提高。
合理化进行教学定位,重基础知识、基本方法和基本思想,指导好学生对教材的合理利用,理解知识网络,构建认识体系,明确高考考试内容和考试要求,把握好复习方向和明确重难点,为学生进入高三复习创造良好开端。由于高二年的学生要参加基础学科的学业会考,占据了大量的时间,导致最后的复习总结、提高阶段存在很大不足,计划在以后的总复习阶段给予加强。
在今后的教育教学工作中,我将更严格要求自己,多方面提高自己的素质,努力工作,争取在多领域贡献自己的力量,发扬优点,改正缺点,开拓前进,不断地奉献自己的力量。
高二数学期末教学总结【篇1】
针对期末考试末出现的问题,做出了以下反思和以后在数学的学习末要运用的方法:
(1)记数学笔记,特别是对概念理解的不同侧面和数学规律,教师在课堂末拓展的课外知识。记录下来本章你觉得最有价值的思想方法或例题,以及你还存在的未解决的问题,以便今后将其补上。
(2)建立数学纠错本。把平时容易出现错误的知识或推理记载下来,以防再犯。争取做到:找错、析错、改错、防错。达到:能从反面入手深入理解正确东西;能由果朔因把错误原因弄个水落石出、以便对症下药;解答问题完整、推理严密。
(3)熟记一些数学规律和数学小结论,使自己平时的运算技能达到了自动化或半自动化的熟练程度。
(4)经常对知识结构进行梳理,形成板块结构,实行“整体集装”,如表格化,使知识结构一目了然;经常对习题进行类化,由一例到一类,由一类到多类,由多类到统一;使几类问题归纳于同一知识方法。
(5)阅读数学课外书籍与报刊,参加数学学科课外活动与讲座,多做数学课外题,加大自学力度,拓展自己的知识面。
(6)及时复习,强化对基本概念知识体系的理解与记忆,进行适当的反复巩固,消灭前学后忘。
(7)学会从多角度、多层次地进行总结归类。如:①从数学思想分类②从解题方法归类③从知识应用上分类等,使所学的知识系统化、条理化、专题化、网络化。
(8)经常在做题后进行一定的“反思”,思考一下本题所用的基础知识,数学思想方法是什么,为什么要这样想,是否还有别的想法和解法,本题的分析方法与解法,在解其它问题时,是否也用到过。
(9)无论是作业还是测验,都应把准确性放在第一位,通法放在第一位,而不是一味地去追求速度或技巧,这是学好数学的重要问题。
高二数学期末教学总结【篇2】
一、 导数的应用
1.用导数研究函数的最值
确定函数在其确定的定义域内可导(通常为开区间),求出导函数在定义域内的零点,研究在零点左、右的函数的单调性,若左增,右减,则在该零点处,函数去极大值;若左边减少,右边增加,则该零点处函数取极小值。学习了如何用导数研究函数的最值之后,可以做一个有关导数和函数的综合题来检验下学习成果。
2.生活中常见的函数优化问题
1)费用、成本最省问题
2)利润、收益最大问题
3)面积、体积最(大)问题
二、推理与证明
1.归纳推理:归纳推理是高二数学的一个重点内容,其难点就是有部分结论得到一般结论,-的方法是充分考虑部分结论提供的信息,从中发现一般规律;类比推理的难点是发现两类对象的相似特征,由其中一类对象的特征得出另一类对象的特征,-的方法是利用已经掌握的数学知识,分析两类对象之间的关系,通过两类对象已知的相似特征得出所需要的相似特征。
2.类比推理:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理,简而言之,类比推理是由特殊到特殊的推理。
三、不等式
对于含有参数的一元二次不等式解的讨论
1)二次项系数:如果二次项系数含有字母,要分二次项系数是正数、零和负数三种情况进行讨论。
2)不等式对应方程的根:如果一元二次不等式对应的方程的根能够通过因式分解的方法求出来,则根据这两个根的大小进行分类讨论,这时,两个根的大小关系就是分类标准,如果一元二次不等式对应的方程根不能通过因式分解的方法求出来,则根据方程的判别式进行分类讨论。通过不等式练习题能够帮助你更加熟练的运用不等式的知识点,例如用放缩法证明不等式这种技巧以及利用均值不等式求最值的九种技巧这样的解题思路需要再做题的过程中总结出来。
高二数学期末教学总结【篇3】
一、理解集合中的有关概念
(1)集合中元素的特征: 确定性 , 互异性 , 无序性 。
(2)集合与元素的.关系用符号=表示。
(3)常用数集的符号表示:自然数集 ;正整数集 ;整数集 ;有理数集 、实数集 。
(4)集合的表示法: 列举法 , 描述法 , 韦恩图 。
(5)空集是指不含任何元素的集合。
空集是任何集合的子集,是任何非空集合的真子集。
二、函数
一、映射与函数:
(1)映射的概念: (2)一一映射:(3)函数的概念:
二、函数的三要素:
相同函数的判断方法:①对应法则 ;②定义域 (两点必须同时具备)
(1)函数解析式的求法:
①定义法(拼凑):②换元法:③待定系数法:④赋值法:
(2)函数定义域的求法:
①含参问题的定义域要分类讨论;
②对于实际问题,在求出函数解析式后;必须求出其定义域,此时的定义域要根据实际意义来确定。
(3)函数值域的求法:
①配方法:转化为二次函数,利用二次函数的特征来求值;常转化为型如: 的形式;
②逆求法(反求法):通过反解,用 来表示 ,再由 的取值范围,通过解不等式,得出 的取值范围;常用来解,型如: ;
④换元法:通过变量代换转化为能求值域的函数,化归思想;
⑤三角有界法:转化为只含正弦、余弦的函数,运用三角函数有界性来求值域;
⑥基本不等式法:转化成型如: ,利用平均值不等式公式来求值域;
⑦单调性法:函数为单调函数,可根据函数的单调性求值域。
⑧数形结合:根据函数的几何图形,利用数型结合的方法来求值域。
三、函数的性质
函数的单调性、奇偶性、周期性
单调性:定义:注意定义是相对与某个具体的区间而言。
判定方法有:定义法(作差比较和作商比较)
导数法(适用于多项式函数)
复合函数法和图像法。
应用:比较大小,证明不等式,解不等式。
奇偶性:定义:注意区间是否关于原点对称,比较f(x) 与f(-x)的关系。f(x) -f(-x)=0 f(x) =f(-x) f(x)为偶函数;
f(x)+f(-x)=0 f(x) =-f(-x) f(x)为奇函数。
判别方法:定义法, 图像法 ,复合函数法
应用:把函数值进行转化求解。
周期性:定义:若函数f(x)对定义域内的任意x满足:f(x+T)=f(x),则T为函数f(x)的周期。
其他:若函数f(x)对定义域内的任意x满足:f(x+a)=f(x-a),则2a为函数f(x)的周期.
应用:求函数值和某个区间上的函数解析式。
四、图形变换:函数图像变换:(重点)要求掌握常见基本函数的图像,掌握函数图像变换的一般规律。
常见图像变化规律:(注意平移变化能够用向量的语言解释,和按向量平移联系起来思考)
平移变换 y=f(x)→y=f(x+a),y=f(x)+b
注意:(ⅰ)有系数,要先提取系数。如:把函数y=f(2x)经过 平移得到函数y=f(2x+4)的图象。
(ⅱ)会结合向量的平移,理解按照向量 (m,n)平移的意义。
对称变换 y=f(x)→y=f(-x),关于y轴对称
y=f(x)→y=-f(x) ,关于x轴对称
y=f(x)→y=f|x|,把x轴上方的图象保留,x轴下方的图象关于x轴对称
y=f(x)→y=|f(x)|把y轴右边的图象保留,然后将y轴右边部分关于y轴对称。(注意:它是一个偶函数)
伸缩变换:y=f(x)→y=f(ωx),
y=f(x)→y=Af(ωx+φ)具体参照三角函数的图象变换。
一个重要结论:若f(a-x)=f(a+x),则函数y=f(x)的图像关于直线x=a对称;
高二数学期末教学总结【篇4】
本学期高二数学学习了必修5和选修1-1(文)、两个模块,包括“数列”、“解三角形”、“不等式”、“常用逻辑用语”、“圆锥曲线与方程”、“导数及其应用(文)”等内容。内容多,任务重,时间紧。如何提高课堂学习的效率,就成为我们高二数学教学教研的工作重点。针对文理分科后的具体情况,我们主要抓了以下几个方面的工作:
一、准确把握学情状况,切实做到因材施教
1.激发学生学习兴趣,帮助他们树立信心,针对学生基础普遍较差,接受比较慢的实际情况,我们采取了低起点、小步子的教学策略,狠抓双基落实,理论联系实际,关注数学情境的建立,突出数学的应用价值,通过社会实践、社会调查、研究,培养学生的学习兴趣及应用所学知识解决实际问题的能力。如在学校简单逻辑部分时,我们每天给学生出一道趣味逻辑推理题,学生普遍产生了学习逻辑的浓厚兴趣,收到了较好的教学效果。
在教学过程中,我们根据新课标的要求准确把握教学的难度,凡是新教材已删除的内容一般不再补充。通过让学生亲手制做教具,利用计算机软件画函数图像等形式,激发他们学习数学的兴趣。利用各章设计的“信息技术应用”专题,鼓励学生运用计算机、计算器等进行探索和发现,强化了信息技术的教学,让学生正确认识了数学和计算机技术的关系,把复杂的问题简单化,增强了他们的自信心。
2.落实培优补差措施,切实抓好分类推进
实践告诉我们,培优一定要立足学生实际,不能搞拔苗助长。为了保护优等生的学习热情,我们在日常教学过程中结合教学进度,适当为学有余力的部分学生布置一些稍微难一点的题目。通过网络,把选作题目发到学生的个人邮箱,或者直接复制到学生的U盘。引导优等生克服浮漂、急功近利、眼高手低等不良倾向,扎扎实实的夯实基础,努力培养综合、灵活运用所学知识解决实际问题的能力。在加强个别指导的同时,帮助他们选择必要的课外学习读物,开阔了他们的知识视野,培养了他们的自学能力。
针对学习困难生的特点,我们首先帮助他们树立学好数学的信心,如课堂提问时故意提一些比较简单的问题,当他们回答正确时及时给与表扬。在布置作业时,采取分层次的要求,对学习困难生适当降低要求,并根据情况给与适当的提示,遇到确实不会的问题,允许他们不交或者缓交作业,但是必须及时找老师辅导。我们还通过谈心,及时了解他们学习中的困难,特别是克服对数学的畏惧心理,让学生亲其师信其道。在对学生个别指导时,重在解决他们会而不对的问题,向学生介绍科学的学习方法,培养他们良好的学习习惯。
在对学生个别指导时,我们着重解决他们会而不对的问题,向学生介绍科学的学习方法,培养他们良好的学习习惯,特别是注重抓每节课的课堂训练,凡是课堂上能够完成的作业,尽量当堂完成,落实堂堂清,有效的防止课下抄作业现象,提高了课堂学习的效率。
二、.认真钻研新课程标准,提高驾驭新教材的能力
1.反复研读新课程标准,领会教材的编写意图
高中数学新课程标准对于我们来说还有许多的困惑,为了提高对它的认识水平,我们经常在一起研讨新课程标准,有时为一个有异议的问题“争论”半天(当然,只争论问题,绝不伤感情)。每次市新教材培训我们都全部参加,通过参加各级各类培训,鲜明的理念,全新的框架,明晰的目标,有效的学习,使我们对新课程标准的基本理念,设计思路,课程目标及课程实施建议有了更深的了解,准确的把握了新教材的知识结构和编写意图,认识提高到了新的层面。如对双基的认识,通过讨论我们达成共识,随着时代的发展,特别是数学的广泛应用、计算机技术和现代信息技术的发展,新世纪的高中数学教学有必要对基础知识、基本技能和能力的内涵重新审视,以便形成符合时代要求的新的“双基”。而被新教材删减了的繁琐的计算、人为技巧化的难题和过分强调细枝末节的内容就不能再称其为双基,克服了“双基异化”的倾向。
新的高中数学教材在数学应用和联系实际方面有很好的突破,提供了基本内容的实际背景,反映了数学的应用价值,新教材中设有大量的“阅读材料”“课题学习”“社会调查”“信息技术应用”的内容,供学生选学。为了更好的体现教科书强调数学应用的理念,在例题的编排上,我们尽量联系生产生活实际,突出数学的应用价值,极大的激发了学生学习数学的热情。我们还结合教材提供的研究性学习和课题学习材料,安排学生进行社会调查和研究,理论联系实际,培养了学生应用所学知识解决实际问题的能力。
2.合理调整教学内容,及时进行查缺补漏
新教材对授课内容作了较大的变动,如必修五中的递推数列,选修1—1,中圆锥曲线的第二定义及准线方程等的要求与老教材有很大的不同, 为了准确把握新教材的教学要求,我们参考不同版本的新教材和前几年老教材,对教学内容进行了合理的整编、重组,使得既重点突出,结构合理,又节省了课时。重视各部分内容之间的联系,结合新授课内容及时查缺补漏。新教材已删除的对学习本学期内容没有影响的内容我们一律不再补充;但是新教材在内容衔接上也确实存在许多明显的疏漏,如要学习选修1—1中的导数,就必须用到极限的概念与运算,可是新教材中却从来没有提及过极限,为了知识了连贯性,我们对此做了重点补充。初中所学二次函数是我们本学期学习一元二次不等式解法的基础,可是大部分学生忘得一干二净,我们结合新授课内容及时进行了查缺补漏,帮助学生把断了的知识链衔接好,使得后继学习事半功倍。
从期中、期末考试中也反映出一些问题,如有些题目平日教学中多次讲过、练过,有的就是课本上的例题,可是照样有大部分学生不会解答,这说明我们平时的教学抓得还不够实。今后一定继续狠抓双基落实,复习时不贪多求快,稳扎稳打,重点知识反复训练,特别是加强数学思想方法与解题策略的训练,重在解决会而不对的问题。